Tag Archives: agriculture

Florida’s Flood System Built on 1947 Hurricane Season, Now Irma, SLR/IRL

Florida hurricane of 1947 https://www.youtube.com/watch?v=PgAHv_Z5wqE

As the possibility of a direct hit from Hurricane Irma approaches, I can’t help but reflect.

Looking back, we see that it was the severe flooding and the hurricane season of 1947 that led Florida and the U.S. Government down the track to where we are today through the creation of the Florida Central and South Florida Flood Project, (CSFP).

In 1947, during the United States’ post World War II boom, Florida had a very active and destructive hurricane season. This slightly edited excerpt from the  ACOE’s book  River of Interest does a good job giving a short overview of that year:

 “…Rain began falling on the Everglades in large amounts. On 1 March, a storm dropped six inches of rain, while April and May also saw above average totals. The situation became severe in the summer…

As September approached and the rains continued, the ground in the Everglades became waterlogged and lake levels reached dangerous heights. Then, on 17 September, a hurricane hit Florida on the southwest coast, passing Lake Okeechobee on the west and dumping large amounts of rain on the upper Everglades, flooding most of the agricultural land south of Lake Okeechobee.

George Wedgworth, who would later become president of the Sugar Cane Growers Cooperative of Florida and whose parents were vegetable growers in the Everglades, related that his mother called him during the storm and told him, “ this is the last call I’ll make from this telephone because I’m leaving. . . . “We’ve got an inch or two of water over our oak floors and they’re taking me out on a row boat.”

Such conditions were prevalent throughout the region. Before the area had a chance to recover from the devastation, another hurricane developed, moving into South Florida and the Atlantic Ocean by way of Fort Lauderdale. Coastal cities received rain in large quantities, including six inches in two hours at Hialeah and nearly 15 inches at Fort Lauderdale in less than 24 hours.

The Everglades Drainage District kept its drainage canals open to discharge to the ocean as much of the floodwater in the agricultural area as it could, exacerbating coastal flooding. East coast residents charged the District with endangering their lives in order to please ag- ricultural interests, but this was vehemently denied…

Whoever was to blame, the hurricanes had devastating effects. Although the levee around Lake Okeechobee held, preventing the large numbers of deaths that occurred in 1926 and 1928, over 2,000 square miles of land south of the lake was covered by, in the words of U.S. Senator Spessard Holland, “an endless sheet of water anywhere from 6 to 7 feet deep down to a lesser depth.” The Corps estimated that the storms caused $59 million in property damage throughout southern Florida, but Holland believed that the agency had “under- stated the actual figures.” The destruction shocked citizens of South Florida, both in the upper Everglades and in the coastal cities, and they demanded that something be done.”

Cover of the “Weeping Cow” book. (South Florida Water Management District)

Well, what was done was the Central and South Florida Flood Project.

Key Florida politicians, and the public demanded the Federal Government assist, and as both the resources and will were present, the project was authorized in 1948 with massive additional components making way not only for flood protection, but for even more agriculture and development. In Martin County and St Lucie County this happened by the controversial building of canals C-23, C-24, C-25 and “improving” the infamous C-44 canal that connects to Lake Okeechobee. This construction was basically the nail in the coffin for the St Lucie River and Southern Indian River Lagoon.

Map showing the Jacksonville District’s initial comprehensive proposal, 1947. (Claude Pepper Collection, Claude Pepper Library, Florida State University, Tallahassee, Florida)

But before the death of the environment was clear, the Corps developed a plan that would include 1,000 miles of levees, 720 miles of canals, and almost 200 water control structures. Flooding in coastal cities and in the agricultural lands south of Lake Okeechobee would be minimized and more controllable.

Yes, a goal of the program was to provide conservation areas for water storage, protecting fish and wildlife habitat. Although water conservation areas were constructed, conservation of wildlife did not work out so well, and has caused extreme habitat degradation of the Everglades system, Lake Okeechobee, the southern and northern estuaries, the Kissimmee chain of lakes, and Florida Bay.  Nonetheless, this project made possible for over five million people to now live and work in the 18,000 square mile area that extends from south of Orlando to Florida Bay “protected from flooding” but in 2017 living with serious water quality issues.

With problems apparent, in 1992 the Central and South Florida Project was “re-studied” and we continue to work on that today both for people and for wildlife…

Irma many be the system’s greatest test yet…

Yesterday’s Army Corp of Engineer Periodic Scientist Call was focused on saving people’s lives and safety. After the built-system was discussed, Mr Tyler Beck of the Florida Wildlife Commission, and Mr Steve Schubert of the U.S. Fish and Wildlife Service reported on the endangered Everglades Snail Kites and their nests at Lake Okeechobee. Like most birds, pairs mate for life. There are presently fifty-five active nests, thirty-three in incubation, and twenty-three with baby chicks…

In the coming days, as the waters rise on Lake Okeechobee, and the winds scream through an empty void that was once a cathedral of colossal cypress trees, Mother Nature will again change the lives of Florida’s wildlife and its people, just as she did in 1947. Perhaps this time, she will give us vision for a future where nature and humankind can live in greater harmony…

Hurricane Irma as a category 5, 2017
Everglades Snail Kite, Florida Audubon
SFWMD basin map for SLR showing S-308 and S-80 along with other structures.
South Florida today…
Florida map 1500s

Links:

1947 Hurricane: https://en.wikipedia.org/wiki/1947_Cape_Sable_hurricane

1947 Hurricane, 2: https://en.wikipedia.org/wiki/1947_Fort_Lauderdale_hurricane

Central and South Florida Flood Project full text: https://archive.org/stream/centralsouthernf00unse/centralsouthernf00unse_djvu.txt

Restudy of CSFFP: http://141.232.10.32/about/restudy_csf_devel.aspx

Central and South Florida Flood Project Restudy, 1948Sofia: https://sofia.usgs.gov/sfrsf/entdisplays/restudy/

River of Interest, ACOE, Chapter 2: http://141.232.10.32/docs/river_interest/031512_river_interests_2012_chap_02.pdf

US Fish and Wildlife: The endangered and beautiful Everglades Snail Kite:https://www.nps.gov/ever/learn/nature/snailkite.htm

Water Quality Assessment of the St. Lucie River Watershed – Water Year 2017 – DRAFT- Gary Goforth, P.E., PhD. SLR/IRL

Dr. Gary Goforth ready to tour the SLR & Lake O.

It is a journey the state, federal, and local agencies don’t always wish to take–a journey to face the numbers of our watershed…

Today, Dr Gary Goforth (http://garygoforth.net) shares his most recent report, “Water Quality Assessment of the St Lucie River Watershed, For Water Year 2017, DRAFT.”

Mind you, for non-scientist people like myself, a “water year” is reported from May of one year, through April the next year, as opposed to a calendar year.

The full report is linked at the bottom of the post and contains numerous helpful charts. I have just included the key findings below.

Dr Goforth wanted to get the draft assessment out before the Florida Department of Environmental Protection’s  Basin Management Action Plan workshop scheduled for this Friday Aug. 25th at 10:00 am at Martin County Building Permits Office, 900 Southeast Ruhnke Street, Stuart, FL 34994, Conference Rooms A & B because this is where the rubber hits the road! FDEP: (http://www.dep.state.fl.us/central/Home/Watershed/BMAP.htm)

Reflections in the St Lucie River, JTL

Water Quality Assessment of the St. Lucie River Watershed –Water Year 2017 – DRAFT Gary Goforth, P.E., Ph.D.

Quis custodiet ipsos custodes? (Who watches the Watchers?)

Key Findings:
1. Over the last water year (May 2016 – April 2017), the surface water entering the St. Lucie River and Estuary (SLRE) in general was of poor water quality. The best water quality entering the SLRE was from the highly urbanized Tidal Basins. The largest source of phosphorus, nitrogen and sediment pollution to the SLRE was Lake Okeechobee discharges. The C-44 Canal Basin contributed poor water quality, and was the only basin demonstrating a worsening in water quality over the last ten years.

2. It was estimated that stormwater runoff from agricultural land use contributed more flow and nutrient pollution than any other land use, even contributing more flow than Lake Okeechobee discharges.

3. The annual Basin Management Action Plan (BMAP) progress reports produced by the Florida Department of Environmental Protection continue to indicate water quality conditions in the tributaries of the SLRE are better than they actually are. Examples of flaws in the BMAP assessment process include the omission of Lake Okeechobee pollution loads, the use of simulated data instead of observed data, the inability to account for hydrologic variability, and the inability to assess individually each of the major basins contributing to the SLRE.

4. An alternative to the assessment approach presented in the BMAP progress reports was developed and used to evaluate water quality conditions of major inflows to the SLRE and to assess progress towards achieving the Total Maximum Daily Load (TMDL) load reduction goals. This alternative approach uses observed data, includes Lake discharges, accounts for hydrologic variability, and is applied to each of the major basins contributing pollution loads to the SLRE. For WY2017, observed nitrogen loads to the SLRE exceeded the Phase 1 BMAP target loads (adjusted for hydrologic variability) by 77 percent. Observed phosphorus loads exceeded the Phase 1 BMAP target loads (adjusted for hydrologic variability) by 53 percent.

5. The largest single source of total nitrogen, total phosphorus and sediment load to the SLRE was Lake Okeechobee discharges. In addition, total phosphorus concentrations in Lake Okeechobee discharges to the SLRE remained almost four times the lake’s TMDL in-lake target concentration of 40 parts per billion (ppb). In 2017, the South Florida Water Management District (SFWMD) reported that phosphorus loading to the lake from surrounding watersheds was almost 5 times the Lake’s TMDL of 105 metric tons, yet staff acknowledged the agency does not enforce permits that set numeric limits on phosphorus discharges to the lake[1] (SFWMD 2016, SFWMD 2017). Unfortunately, despite the continued and well-publicized pollution of the lake, the Florida legislature in 2016 enacted a water bill that pushed back deadlines for achieving the lake’s TMDL by decades (Ch. 2016-1).

6. The best water quality entering the SLRE during WY2017 was observed in the highly urbanized Tidal Basins, with concentrations of 97 ppb and 819 ppb for TP and TN, respectively. Each of the remaining source basins, except the C-44 Canal Basin[2], exhibited a slight improvement in nutrient levels compared to their base periods, however, collectively these WY2017 loads did not achieve the alternative BMAP Phase 1 load target (Figures ES-1 and ES-2). The C-23 and Tidal Basins met the alternative BMAP Phase 1 target for TP, while the C-23, C-24 and Tidal Basins met the alternative BMAP Phase 1 target for TN. The predominantly agricultural C-44 Canal Basin exhibited poor nutrient conditions, and in fact, continued a trend of deteriorating nutrient conditions compared to its 1996-2005 base period. As a whole, the water quality entering the SLRE remains poor, although a slight improvement over the 1996-2005 period was observed.

FULL REPORT below: the complete report can be seen/downloaded from Dr Goforth’s website under “Estuaries and Lake Okeechobee:” http://www.garygoforth.net/DRAFT%20-%20Water%20Quality%20Assessment%20of%20the%20SLRW%20-%20Water%20Year%202017.pdf

Dr Goforth’s website:(http://garygoforth.net)

Army Corp of Engineer Structure S-80 releases water from Lake Okeechobee in the the C-44 Canal that leads to the St Lucie River. JTL
Lake Okeechobee.
basins of SLR/IRL SFWMD

 

Goforth Graph Showing C-44 Basin Runoff into Lake Okeechobee, 2017, SLR/IRL

In recent years we along the St Lucie River/Indian River Lagoon have been screaming because the ACOE and SFWMD have been discharging water from Lake Okeechobee and the C-44 basin into our waterways causing destructive toxic algae blooms and other issues to our area …

This year some are screaming because C-44 basin runoff water in southern Martin County is being pumped back into Lake Okeechobee. Yes, C-44 is “running backwards.” It’s a crazy world here in South Florida even through the water managers are working hard at “getting the water right…”

So two odd things are going on right now. First, water is being sent into Lake O from the C-44 canal as we were in a long-time drought, and also, now, water is being back-pumped into the lake from the south to help alleviate flooding in the Water Conservation Areas— as it has rained so much recently “down there.” This whole situation is exacerbated because the EAA,  in the middle, “is kept dry to protect the property of the agricultural industry and safety of communities south of the dike.”

SLR basins. C-44 and surrounding man-made basin is in pink. This is the area that is being back pumped into Lake O as the lake has been low due to drought. But area rains in southern Water Conservation Areas are so full water “cannot be sent south…” South Florida Conundrum…SFMWD, 2017.
The graph and short write-up below are from friend and engineer Dr Gary Goforth. The graph “shows” the C-44 basin runoff (see image above) being sent to Lake Okeechobee in 2017 compared to other years since 1980 (other than ’81) “is at 100%.”

I have also included some articles and images on the other “back into Lake O” subject. Back-pumping was made illegal in the 1990s, but is allowed under certain circumstances such as endangering communities and agriculture in the EAA, and danger to wildlife in the conservation areas due to flooding…All of this is “back-pumping” not good for the health of the lake. In all cases, it is helping one thing while hurting another…

One day we will have to truly get the water right. Images below may help explain things.

ISSUE OF BACK-PUMPING:

This satellite photo shows water on lands in 2005. One can see the lands in the EAA are devoid of water. This water has been pumped off the lands into the Water Conservation Areas, sometimes back pumped into the lake, and also stored in other canals. *This slide is similar to what is going on today in June of 2017. Wildlife is drowning in the Water Conservation Areas (south of EAA) while the Everglades Agricultural Area is pumped dry to protect agriculture. (just south Lake O) Crazy. (Captiva Conservation 2005.)
ISSUE OF C-44 CANAL BASIN WATER BEING SENT INTO LAKE O RAHTER THAN TO SLR:

” For the period 1980-2016, about 32% of the C-44 Basin runoff was sent to the Lake, while 68% was sent to the St. Lucie River and Estuary. Historically (i.e., before 1923) virtually none of the C-44 Basin runoff went to the St. Lucie River and Estuary: some went to the Lake, some went to the Loxahatchee River and some went north to the St. John’s River. So far in 2017, virtually all of the basin runoff has been sent to the Lake.”

Gary Goforth (http://www.garygoforth.net)

6-28-17 JTL

___________________________________________

ARTICLES ON C-44 INTO LAKE O & BACK-PUMPING INTO LAKE:

Why is C-44 flowing backwards, JTL: https://jacquithurlowlippisch.com/2017/06/13/why-are-c-44-and-s-2-flowing-backwards-into-lake-okeechobee/WPTV Back Pumping Concerns: http://amp.wptv.com/2248571360/lake-okeechobee-back-pumping-concers.html

TCPalm:  Back-pumping into L.O. http://www.tcpalm.com/story/news/local/indian-river-lagoon/health/2017/06/27/south-florida-water-management-district-backpumping-into-lake-o/431280001/

CBS12: http://cbs12.com/news/local/water-managers-begin-back-pumping-to-address-high-water-emergency

Map south of Lake O. showing EAA, STAs, and WCAs. (Map Everglades Foundation, public)

WPTV’s “Changing Seas” Features St Lucie River’s Toxic Algae Saga, SLR/IRL

The day before yesterday, I received an email from my mother. It read:

“I was watching TV and it looked like “our” toxic algae is going to be in the Changing Seas program tomorrow night on PBS at 9.”

She was right! So glad she let me know as I may have missed it. If you did, you can view on link below.

CHANGING SEAS
Toxic Algae: Complex Sources and Solutions:

http://video.wpbt2.org/video/3002101897/

There is incredible footage of the 2016 toxic algae event caused primarily by forced discharges by the ACOE and SFWMD from Lake Okeechobee into the estuaries, St Lucie and Caloosahatchee. South Florida locals such as Mary Radabaugh, Dr Edie Widder, Dr Brian LaPointe, Mark Perry, Phil Norman, Dr Larry Brand, Dr Steve Davis, and Col. Jennifer Reynolds are prominently featured. Edie Widder’s political commentary at the end is priceless.

CHANGING SEAS
Toxic Algae: Complex Sources and Solutions.
Aired: 06/21/2017

Water releases from Lake Okeechobee periodically create putrid mats of blue-green algae. Scientists think water pollution is to blame, and if something isn’t done about it there could be irreparable damage to the environment, the local economy and people’s health.

You can Like Changing Seas on Facebook and attend their DIVE IN Summer series on this topic June 28th, 2017. See link:

https://www.facebook.com/changingseas/?hc_ref=PAGES_TIMELINE


Please use link, not arrow to access video again: http://video.wpbt2.org/video/3002101897/

Thank you Changing Seas for covering this important topic!

6-22-17

JTL

Why are C-44 and S-2 flowing backwards into Lake Okeechobee? 

My brother, Todd,  wrote to me on June 8th noting that the C-44 canal was flowing westwards into Lake Okeechobee rather than dumping eastwards into the St Lucie as is standard operating procedure after a big rain…

Yes this canal, as most of the others, can “flow” in either direction, seemly “backwards.”

So how can this happen? This backwards flow?

Dr Gary Goforth says the following:

“Yes this is normal operations; generally when the Lake level is below 14 ft the Corps leaves the locks at S-308 wide open which allows any local runoff to flow into the lake.”

Another way Lake Okeechobee can receive water in an unusual way is if the water is pumped into it–back pumped. This has recently been done from the EAA. Back pumping into Lake O has been outlawed, but it is allowed if communities or farmland would flood.

According to an exchange yesterday on Facebook, with  Audubon’s Dr Paul Grey:

“St Lucie (C-44) backflows are just one of many southern inflows now, S-2 is backpumping, three other southern outlets are flowing backward into the low lake (L-8, S354, S-352) the Caloosahatchee was backflowing but appears equalized today. More water is flowing into the lake from downstream areas than upstream right now. Not the end of the world but not desirable either, it is very polluted water. http://w3.saj.usace.army.mil/h2o/reports/r-oke.html  “

When I asked Dr Grey if this was being done to gather water in the lake as we’ve recently been in a drought, or to keep the farmlands in the  EAA and surrounding areas dry, this was his response:

“Both, they want to fill the lake this summer, and so do I, in concept, but much of this backpumping and flowing is because the farmers have been pumping water so rapdily off their own lands they have made the canals too deep, and risk fooding the communities. And rather than tell the farmers the canal its too deep and they have to modererate their pumping, the SFWMD backpumps/flow it to the lake.”

In any case, when I visited yesterday during my trip to Belle Glade, S-308 was closed at Port Mayaca and no more water was entering Lake O from C-44. I’m not sure about S-2.

The water looks dark and full of sediment. The once beautiful beach is full of gritty rocks. Maybe the lake is healthy in the shallows south, near the islands, but by Port Mayaca it looks terrible. Algae has been reported by S-308 a few weeks ago according to a report from Martin County at the River’s Coalition meeting. But thankfully there is not algae reported in C-44 right now.

We have really made a mess of it. For our rivers and for Lake Okeechobee, the reservoir must be built and we must continue to advocate for sending cleaned water south and re -plumb this outdated system. Forward flow or backwards flow, just say NO.

6-13-17 JTL

____________________________________

Todd Thurlow notes 6-8-17

Jacqui,

Interesting note: if this data is correct, C-44 has poured 10.7 billion gallons (aka 13.82 Stuart Feet) of water into Lake Okeechobee in the last three days. With all the recent “local” runoff into the canal, they have opened S-308, sending the water west to the Lake to help get the low lake level up.

48.5 million gallons passed through S-80 to the St. Lucie on June 5th…

-Todd

C-44 back flow to Lake O, ACOE

Article in Okeechobee News by Katrina Elsken “St Lucie Water Flowing Into the Big O” http://okeechobeenews.net/lake-okeechobee/st-lucie-water-flowing-big-o/

SFWMD: https://www.sfwmd.gov

ACOE Lake O: http://www.saj.usace.army.mil/Missions/Civil-Works/Lake-Okeechobee/

Structures and canals south of LO
Canal and basin map, Martin and St Lucie Co,SLR/IRL. SFWMD
C-44 canal from Stuart to Lake O.
S-308 at Lake O and C-44 canal Port Mayaca

Numerous wood storks and great egrets eating fish in the polluted side canals of C-44:

Video:(http://www.youtube.com/watch?v=Z-7IwzHGZIM)

Lake Okeechobee Blue-Green Bacterial Blooms in Florida: Lessons From Lake Erie, Prof. Geoff Norris, SLR/IRL

 

Blue-green algae bloom St Lucie River, 2016, JTL

Today I am again honored to feature the writing of Professor Geoff Norris. This most recent work is a tremendous achievement of time, research, and puzzle piecing. Professor Norris’ past shared articles “Blue Green Algal Blooms in the Lakes, Rivers, and Marine Waters of South Florida Surrounding Lake Okeechobee,” and “Sugarcane and Indians” were extremely popular with many of my readers. Professor Norris has a way of communicating complex topics in an easy and interesting way so that everyone can understand and make the  connections. In the 1960s Professor Norris  lived and worked as a petroleum exploration geologist in Tulsa, Oklahoma. Subsequently, he spent 40 years at the University of Toronto teaching and performing research in geology. A  geologist by training, Professor Norris  has a specialized knowledge of fossil algae, their ecology, morphology, and distribution.  He has published hundreds of scientific papers on fossil algae and related topics…I encourage you to contact him by email with any questions at rosalex@interlog.com

Thank you Professor Norris. “Together we will create a “better water future!”

Jacqui

 

IMG_1003

Lake Okeechobee blue-green bacterial blooms in Florida: lessons from Lake Erie

By Geoff Norris, PhD

University of Toronto: http://www.es.utoronto.ca/people/faculty/norris-geof/

rosalex@interlog.com

May 2017

 

Preamble

 

In the following article, I have attempted to summarize some of the voluminous literature on Lake Erie and its problem blue-green blooms, and how this might help to understand similar events in Lake Okeechobee.  I have included URL web addresses for some of the topics, which can be used to access further information.

 

Although the blooms are often referred to as blue-green algae, this is quite inaccurate and I can see no further point in perpetuating this misnomer.  The blooms are largely or entirely composed of Cyanobacteria, or blue-green bacteria as I have chosen to call them for this article.  This is not just for precision and to point up their lack of a nucleus and other organelles in each cell, but serves to underline how these organisms earn a living and perpetuate themselves that is quite different compared to nucleated organisms, the latter including algae, fungi, all green plants, and all animals.  This difference is really important.

 

The topic is vast and my review barely scratches the surface – it’s not meant to, because I am not an expert and am still trying to understand the vast complexity of blue-green bacterial bloom formation.  I have tried to unravel and clarify some of the science and scientific investigations that have been important for me, and have used these as examples of the work that is going on or has led to current advances.  For every paper I have cited, however, there could be tens or hundreds more that haven’t been consulted or mentioned.  I apologize in advance to those many talented scientists that I haven’t mentioned or that I am simply unaware of.

 

 

Steel Town

 

I used to live in Hamilton, Ontario, a prosperous city with thriving iron and steel mills, other manufacturing industries, an excellent university and a great football team, a sort of Pittsburg of the North. It sits on the shores of Lake Ontario on a sliver of land – the Niagara Peninsula – that separates Lake Erie from Lake Ontario.  In the early summer after the ice had melted, many of the locals in the mid-1900s would take advantage of the beaches along Lake Ontario to sun themselves and wait until the water was warm enough to swim in.  However, you could get a head start on summer by taking a short drive south (less than an hour) to the beaches along Lake Erie where the water was warmer earlier in the summer, and resorts and tourism thrived.  Fish were abundant and the lake was very productive for commercial fishing and equally attractive for sport fishing. The beaches were superb for tourism and sun lovers.  Lake Erie is large but shallow (average depth about 60ft) and so a baby on a Great Lakes scale from a volumetric point of view (most of the Great Lakes are hundreds of feet deep, the deepest being Superior at more than 1300 ft maximum depth).  However, Lake Erie’s smaller volume and shallow waters helped it to warm up quickly in the spring and summer.

 

The Dead Sea of North America

 

Then something happened to Lake Erie, starting in the 1960s.  The water of Lake Erie became murky and discolored, mass fish kills led to piles of rotting marine life polluting the beaches, the tourists and anglers and sun worshippers stayed away in droves, the resorts closed down, the commercial fisheries were badly hit, and the economy suffered enormously.  Algae were blamed but no one was quite sure why they had become so abundant – “eutrophication” was the buzzword of the time.  Lake Erie was declared “dead”, which was quite inaccurate since it was swarming with life, but the wrong sort of life.  The culprits polluting the environment were a mixture of true green algae (such as Cladophora) and so-called “blue green algae” (such as Microcystis and Aphanizomenon), which in truth are types of bacteria using chlorophyll and other pigments that allow them to live in sunlight (their technical name is Cyanobacteria –called blue-green bacteria in this article), and this is discussed in more detail in my previous blog: https://jacquithurlowlippisch.com/tag/dr-geoffrey-norris/).  The plight of the Dead Sea of North America (as Lake Erie became known) was so notorious that one of Dr Seuss’s books for children – The Lorax (1971) – made reference to it in his famous style of doggerel:

 

You’re glumping the pond where the Humming-Fish hummed!

No more can they hum, for their gills are gummed.

So I’m sending them off. Oh, their future is dreary.

They’ll walk on their fins and get woefully weary

In search of some water that isn’t so smeary.

I hear things are just as bad up in Lake Erie.

 

The Fix

 

Very fortunately the mystery of Lake Erie’s “death” was soon solved, thanks to a treaty between the U.S. and Canada dating back to the early 1900s that acknowledged the need to maintain water quality in the Great Lakes’ waters bordering the two countries.
By the middle of the 20th century this had morphed into the International Joint Commission for the Great Lakes. These international efforts were underpinned by government and university-based research in both the U.S. and Canada, which identified phosphorus entering the waters as a major contributor, particularly from agricultural fertilizers on the one hand and from domestic laundry detergents on the other. In 1972 the Great Lakes Water Quality Agreement (GLQWA) was signed between the United States and Canada, by Prime Minister Pierre Trudeau for Canada and President Richard Nixon for the United States.  They loathed one another personally, but they knew what was the right thing to do for their countries.

Prime Minister Pierre Elliott Trudeau and President Richard Nixon signing the Agreement.

 

The Agreement emphasized the reduction of phosphorous entering lakes Erie and Ontario, and, in 1977, maximum levels for phosphorous were added to the Agreement. Also, phosphorus in laundry detergents was finally drastically reduced or banned. Coupled with the U.S. and Canadian Clean Water acts, the International Joint Commission did much to reduce the phosphorus levels in Lake Erie.


International Joint Commission (IJC): More than a century of cooperation protecting shared waters.  Canada and the United States each appoint three of the six IJC Commissioners, including one chair from each country. The two chairs serve concurrently.  The Commissioners are appointed by the highest level of government in each country, but once appointed they do not represent the national governments; they operate at arm’s length.  The Commissioners traditionally work by consensus to find solutions that are in the best interest of both countries. The Commissioners are supported by U.S. and Canadian Section offices in Washington, D.C. and Ottawa, Ontario.”

 

So everyone breathed a sigh of relief, phosphorus levels went down, farmers applied fertilizers to their fields differently, consumers chose phosphorus-free detergents, municipalities improved their storm water and sewage treatment facilities, the fish and other wildlife came back to Lake Erie, and Dr Seuss was persuaded to remove the last line in his poem.  Further details can be found in a report by the National Wildlife Federation:

 

https://www.nwf.org/~/media/PDFs/Regional/Great-Lakes/GreatLakes-Feast-and-Famine-Nutrient-Report.ashx

 

The Monster Returns

 

For almost 20 years, Lake Erie was not plagued by the blue-green bacteria problem, but other problems did emerge such as exotic zebra mussels that interfered with the distribution of elements important in nutrition, but they seemed at the time to be unrelated to bacterial infestations.  Then starting in the mid-1990s, the blue-greens reappeared and became progressively worse leading to super-gigantic blooms that choked the western end of Lake Erie with green muck inches thick and hundred of square miles in extent.  Dead zones – biological black holes – reappeared in the Lake as the rotting organic matter sucked the oxygen out of the water, promising certain death to animals that ventured in.

 

http://www.ijc.org/php/publications/html/modsum/fitzpatrick.html

 

In the summer of 2011 the mother of all blue-green bacterial blooms exploded in Lake Erie, the bloom at its peak being more than 1900 square miles in extent.  That is more than 50% greater than the entire state of Rhode Island, or 35% larger than Long Island, or more than six times larger than all of New York City’s five boroughs.  This super-giant bloom had an estimated weight of 40,000 metric tons dry weight. The wet weights of algae and blue-green bacteria are generally at least 10 times the dry weight. So, this supergiant bloom had at least half a billion tons of blue-green bacteria living within it – a true monster.

http://onlinelibrary.wiley.com/store/10.4319/lo.1963.8.2.0309/asset/lno1963820309.pdf?v=1&t=j1xgd80g&s=6fdbe97550dee9784d101dc1cfb30256a4b0b278

 

MODIS (Moderate Resolution Imaging Spectroradiometer) satellite Image of Lake Erie on September 3, 2011, overlaid over map of Lake Erie tributaries. This image shows the bloom (in green) about 6 weeks after its initiation in the western basin.  From Michalak et al, 2013.

 

These blooms had a devastating effect on the areas flanking the western end of Lake Erie – Ohio, Michigan, and Ontario – with large agricultural areas and several major cities and industrial towns.  Toxins from the blue-green bacteria polluted the drinking water supplies of large cities, and potable water had to be trucked in for the residents.

 

The “greening” of Lake Erie has been documented by Prof. Tom Bridgeman of the University of Toledo in a presentation:

 

https://www.utoledo.edu/law/academics/ligl/pdf/2013

 

Prof. Tom Bridgman

 

In his presentation Prof. Bridgman showed how increasing phosphorus in the lake water favored the blue-green bacteria and shut out the normal tiny floating plants (true algae), a situation that had culminated in the American Dead Sea catastrophe of the 1960s.  The international agreement on phosphorus reduction in the Great Lakes was a huge success story for Lake Erie, but by the mid 1990s algal biomass was beginning to increase again (eutrophication was returning), and by the early 2000s blue green bacteria such as Microcystis were increasing ten-fold, as the reactive phosphorus in the lake waters increased beyond levels recorded in the 1970s.

 

What the heck was going on here?  Everyone had played their part in reducing phosphorus run-off from agricultural lands, and the municipalities and citizens had cleaned up their act.  So where was the phosphorus coming from?  Well now the plot thickens.

 

Farming and Phosphorus

 

This time, the main problems are thought to be ones that governments have much less direct control over, according to a file posted by Emily Chung of the Canadian Broadcasting Corporation News (2014).

 

http://www.cbc.ca/news/technology/lake-erie-s-algae-explosion-blamed-on-farmers-1.2729327

 

To some extent, they include the application of fertilizers to lawns and golf courses, growing expanses of pavement in urban areas that cause water to drain more quickly into waterways without being filtered by vegetation, and invasive zebra mussels that release extra nutrients into the water as they feed. But those aren’t thought to be the biggest cause.

 

“We think farming is the major culprit behind the current levels of phosphorus that’s in runoff and the phosphorus loads that are getting dumped into the western basin of Lake Erie,” said Dr. Glenn Benoy (senior water quality specialist and science adviser with the International Joint Commission in Ottawa).

 

Dr Glenn Benoy

 

So why is this?  Well, there are several things going on.  Firstly, corn production is at an all time high because of the push to increase alcohol biofuel production, and soybeans are being produced in gigantic quantities for use as animal feed, oil and protein for human consumption, plastics and biodiesel.  Secondly, the introduction of no-till farming practice in the U.S. has led to increased run-off of fertilizer.  Thirdly, there’s just not enough infrastructure to deliver in the spring the huge amounts of fertilizer that are required by the corn farmers.  Prof. Ivan O’Halloran of Guelph University, Ontario and a specialist in soil fertility and nutrient use commented that the demand by corn farmers is such that there are simply not enough rail cars to satisfy the need.  So companies offer discounts to farmers who are willing to apply fertilizer in the fall, which in turn leads to enhanced run-off of phosphorus during the winter storms.

Prof. Ivan O’Halloran

 

No-till Farming and Glyphosate

 

And then there is the matter of no-till farming. No-till farming (also called zero tillage or direct drilling) is a way of growing crops or pasture from year to year without disturbing the soil through tillage, and in current practice depends on the use of powerful herbicides such as glyphosate (Monsanto’s Roundup brand being the most popular formulation).  Application of glyphosate kills weeds and other vegetation in preparation of the seedbed.  Later in the year, another application of the herbicide is used to reduce weeds that might be harming the crop. However, this is only possible if the farmers use genetically modified seeds that are resistant to glyphosate – often referred to as Roundup Ready seeds.  In 2014 in the U.S. 98% of soybeans and more than half of corn was Roundup Ready.  Advocates of Roundup point out that glyphosate is a compound derived from phosphonic acid in which the phosphorus is strongly bonded to carbon and therefore is not available to plants, unlike fertilizer which contains phosphates (not phosphonates) which has phosphorus bonded less strongly to oxygen, and is therefore more readily available for uptake by plants (often referred to by the acronym DRP – dissolved reactive phosphorus).

 

https://www.no-tillfarmer.com/articles/5793-scientists-glyphosate-contributes-to-phosphorus-runoff-in-lake-erie?v=preview

 

http://sustainablepulse.com/2016/07/04/glyphosate-herbicides-cause-tragic-phosphorus-poisoning-of-lake-erie/#.V4ZaaleufYI

 

Prof. Chris Spiese is a chemist at Ohio Northern University and he decided to test the contribution that glyphosate might make to the amount of dissolved reactive phosphorus running off of cultivated fields.  He found that glyphosate acts on the soil to allow the phosphorus bonded to the soil (either being naturally present or due to fertilizer use) to be released by the chemical process known as desorption.  He also found that soils richer in both iron oxides and iron hydroxides tend to release by desorption more phosphorus, as do soils that are more acidic.  Overall, he calculated that glyphosate is responsible for releasing 20-25% of the dissolved reactive phosphorus in the Maumee watershed, a river discharging into the western end of Lake Erie.  Prof. Spiese calculated that for every acre of Roundup Ready soybeans, one-third of a pound of phosphorus comes down the Maumee River.  In 2010, according to the Ohio Soybean Council, 4.6 million acres were planted in soybeans, of which about 2 million acres of soybean fields drain into Lake Erie.

 

http://www.circleofblue.org/cpx/great-lakes-algae/infographics-effect-of-northern-ohios-cropland-and-land-use-on-maumee-river-and-lake-erie/

Prof. Chris Spiese

 

If Prof. Spiese’s calculation for the Maumee watershed hold true for all the soybean acreage in Ohio draining into Lake Erie, this would suggest that each year hundreds of tons of dissolved reactive phosphorus are entering the Lake from this source alone.  And then there are the other states and provinces bordering Lake Erie that are also involved in soybean production:  Ontario 2 million acres; Michigan 1.5 million acres; NW New York, 1/3 million acres; Pennsylvania 1/2 million acres.  Of course, not all these agricultural lands drain into Lake Erie but these numbers give some idea of potential dissolved reactive phosphorus input related to soybean production alone.

 

The Monster Revisited

 

The super-giant blue-green bacterial bloom of 2011 in Lake Erie required a concerted response from the scientific community to understand just why this had happened.  There was no doubt in scientists’ minds that dissolved reactive phosphorus as run-off from agricultural land was a major factor.  But why should a super-giant bloom happen in 2011 and not in 2012 when the same agricultural land and its phosphorus run-off were still flanking the Lake and continued to be a constant factor?  Something else was involved.  So an elite team of scientists from universities, government laboratories, and industrial laboratories got together to investigate, headed up by Prof. Anna Michalak of Stanford University.

Prof. Anna Michalak

 

In 2013 this team of 29 scientists came up with their report, which was published in the prestigious Proceedings of the National Academy of Sciences.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631662/

 

The team concluded that long-term trends in agricultural practices (e.g. no-till farming) plus increased acreage under intense cultivation (notably soybeans and corn) led to a major pulse of phosphorus into Lake Erie during some unusually intense spring rainstorms in 2011.  Then in the late spring and summer unusually quiet but warm weather conditions provided just the right conditions to seed, incubate and grow the bloom in the waters of Lake Erie.  The team stated  If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this [super-giant blue-green bacterial] bloom to be a harbinger of future blooms in Lake Erie.” – because unusual weather events, lower wind speeds, warmer waters, and higher rainfalls are becoming more common and can be expected in the future.

 

Glyphosate and Blue Green Bacteria

 

Recent work by scientists at Bowling Green State University has reported the presence of glyphosate in Lake Erie.  It is evidently washing out of the no-till crop fields, and reaches a maximum in the summer months.  Also it has been found in water treatment plants, peaking in the summer months.  Prof. McKay and his colleagues raised the possibility in 2010 that the presence of glyphosate in Lake Erie together with phosphates from fertilizers tend to stimulate the growth of blue-green bacteria, whereas phosphates alone do not do this but favor diatoms, a normal algal component of Lake Erie.  It seems that blue-green bacteria can utilize the phosphorus in the glyphosate, which was believed to be otherwise not normally bio-available.  Many questions remain to be answered but the intense use of glyphosate in the area around Lake Erie demands rapid action in the very near future to establish just how much glyphosate is involved in blue-green bacterial blooms.

 

http://www.lemn.org/LEMN2010_files/Presentations/McKay_LEMN__April2010_Phosphonate_26April.pdf

Prof. Robert McKay

 

An even more disturbing piece of microbiological and genetic research was done by Prof. Victoria López-Rodas in Madrid together with other Spanish colleagues in 2007.  They studied Microcystis, one of the bad boys of the blue-green bacteria family.  They found that rare mutations during growth and division of cells could clone a glyphosate-resistant strain that could survive in glyphosate polluted waters.  In other words, Microcystis has the potential to develop into a “superbug” unaffected by glyphosate.  The odds of a mutation like this occurring were calculated to be a few times in 10 million by Prof. Lopez-Rodas’ team.  That’s better than the odds for winning the Jackpot in the Florida Power Ball Lottery (1 in 292 million), but still not great.  If you bought hundreds of millions of ticket in the lottery, you would have a good chance of winning at least once, perhaps several times (but at $2 a ticket you financial advisor might have some things to say to you about your investment strategy).  However, given a little phosphorus and nitrogen, Microcystis can keep on dividing trillions and trillions of time to form blooms in warm water.  With such astronomical numbers, a rare mutation becomes a virtual certainty at some point during cloning, and in the presence of an antibiotic such as glyphosate, a superbug is born.

Prof. Victoria Lopez-Rodas

 

http://link.springer.com/article/10.1007/s10682-006-9134-8

 

 

The Nitrogen Mystery

 

So far the emphasis has been on phosphorus and how it is important in blue-green bacterial bloom formation.  But nitrogen is also very important as a nutritional component for blue-greens and indeed for all life.  Green plants need nitrogen to synthesize proteins and other important components in their cells.  Although nitrogen is abundant in the atmosphere, it is an inert gas and simply unavailable as a nutrient for many green plants.  It needs to be combined with hydrogen (as an ammonia compound) or with oxygen (as a nitrate compound) to be absorbed by the plant.  These nitrogen compounds may be naturally occurring in soil, but in agricultural land they need to be added frequently as fertilizer for crops to thrive.

 

Blue-green bacteria have an advantage over green algae and other green plants because some blue-greens have the ability to synthesize nitrogen compounds directly from gaseous nitrogen – they are said to be able to “fix” the nitrogen.  But some other blue-green bacteria are unable to fix the nitrogen and have to depend on another source.  Microcystis is a case in point (the blue-green bacteria that are often dominant in the giant blooms in Lake Erie and Lake Okeechobee).  Microcystis is highly dependant on a source of nitrogen to thrive.  This can of course be provided by run-off from crop fertilizer, but it does not always explain the fluctuations of this and other blue-green bacteria that have or do not have nitrogen fixation ability in Lake Erie, in spite of the fact that the experts all agree that phosphorus – not nitrogen – is the principal limiting factor.

 

Lucas Beversdorf and colleagues at the University of Wisconsin decided in 2010 to try and solve the problem and improve predictability of toxic blue-green episodes in a beautifully designed and detailed study of Lake Mendota, Wisconsin a much smaller lake (15 square miles) than Lake Erie but about the same depth and with similar temperate seasonal weather patterns.

Dr. Lucas Beversdorf

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056103

 

They found that Microcystis (blue-green non-nitrogen fixer) rode on the back of Aphanizomenon  (blue-green nitrogen fixer) in a nutritional sense.  Without the nitrogen fixer doing its work first in the spring, Microcystis as a non-nitrogen fixer could not attain dominance and pollute the water with toxic microcystin in the summer.  This could be relevant to understanding how the blooms that occurred in the mid-20th century in Lake Erie came about, both Microcystis and Aphanizomenon being important contributors to large blue-green blooms at that time.  It could also be important in predicting when blooms can be expected.

 

Prof. Karl Havens, a biologist at the University of Florida (and formerly of the South Florida Water Management District) has discussed the implications of nitrogen and phosphorus as nutrients for blue-green bacteria in Lake Okeechobee, and the need to reduce both given the physical and biological complexities in a shallow lake.

 

https://www.researchgate.net/publication/216768923_Controlling_Eutrophication_Nitrogen_and_Phosphorus

 

Prof. Karl Havens

 

It has been known for some time that non-nitrogen fixing bacteria are highly competitive when it comes to ammonium compounds in freshwater lakes, possibly explaining why Microcystis and similar blue-green bacteria do achieve dominance in the blue-green blooms when in proximity to agricultural run-off.

 

http://ci.nii.ac.jp/naid/10011533602/

 

Blue-greens from Space

 

Researchers are looking for ways to monitor assess and predict algal blooms of all types.  This can be done by sampling the lake waters and analyzing them for various organisms and chemical compounds, such as Dr Beversdorf did for his detailed study of Lake Mendota.  However, in very large lakes such as Lake Erie the shear size of the lake makes rapid response to a growing giant algal bloom impossible.

 

Prof. Joseph Ortiz of Kent State University, Ohio has been actively involved in developing new ways to gather information on giant blue-green bacterial blooms using an instrument on board the International Space Station.  From space it can image all of Lake Erie in two days – remember Lake Erie is about 9,900 square miles (241 miles long, 57 miles wide).  He uses a technique called hyperspectral visible derivative spectroscopy, quite a mouthful but very important.  The hyperspectral imager works in orbit about 220 miles above the Earth’s surface and transmit the results to Dr Ortiz who uses sophisticated analytical methods to identify various types of algae and bacteria in the lake water.

Prof. Joseph Ortiz

 

https://www.kent.edu/research/joseph-ortiz

 

https://hyspiri.jpl.nasa.gov/downloads/2014_Workshop/day3/1_Ortiz_2014_HyspIRI_JPL_Science_Team_talk.pdf

 

This and related techniques are now being used to forecast blue-green bacterial blooms, in cooperative ventures between NASA and NOAA (National Oceanographic and Atmospheric Administration).  For example this was their forecast summary for 2014:

 

“This year’s forecast is for a western basin Lake Erie cyanobacteria bloom of 22,000 metric tons dry weight (MT), with a 95% predictive interval of 11,000 to 33,000 MT. The bloom size over the last decade (2004-2013) has averaged 14,000 MT, such that this year’s bloom will likely be above average. However, the 2014 bloom is expected to be less than the record bloom of 40,000 MT, which occurred in 2011.”

 

https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/docs/LakeErieBloomForecastRelease071514.pdf

 

 

In August of 2014 the City of Toledo shut down its water supply because of contamination by blue-green bacterial toxins (microcystin), which made it undrinkable for 400,000 residents, confirming the astonishing power of this predictive method.

 

A Florida Mismanagement Plan for Niagara Falls

 

Just imagine if the same planning “logic” had been applied to Lake Erie as has happened with Lake Okeechobee.  In the case of Lake Okeechobee, agricultural interests took over an Everglades river and associated sawgrass wetlands to drain them for use as sugar plantations.  To do this the ancient course of an Everglades river was disrupted by damming its 25-mile wide outflow from Lake Okeechobee, upstream from the Everglades Agricultural Area.  In so doing the lake level rose because it had no other natural outlet. Therefore higher shoreline dike construction was needed (the Herbert Hoover Dike) to impound the water to prevent flooding of the adjacent land.  All this destroyed a large part of the Everglades, a natural wonder of the world designated an International Biosphere Reserve and a World Heritage Site by UNESCO and a Wetland of International Importance. The “river of grass” in the Everglades became starved for water.

Everglades River of Grass

Meanwhile, the Kissimmee River feeding into Lake Okeechobee and draining another agricultural area was straightened and canalized to remove those annoying meanders that characterize river systems as they approach local base level (the lowest point to which a river can flow).  The straightened channels thus allowed rapid fertilizer run-off from the fields, preventing filtering and bio-cleansing in the natural wetland vegetation of the flood plain meanders that would otherwise exist, further contributing to heavy phosphorus loading in Lake Okeechobee and the consequent blue-green bacterial blooms. The straightened channels also contributed voluminous extra water that the lake could not handle.  Therefore, the lake managers and flood controllers (the Army Corps of Engineers) directed the overflow waters down a number of canals with outlets to the highly populated Atlantic and Gulf coastlines and the sea, the overflow water being heavily polluted with blue-green bacteria from the giant blooms that grew in the lake.

 

So let’s work this through for our imaginary Niagara Gorge Agricultural Area, a 7-mile stretch that would be ideal land for growing grapes and other fruits in a valley just below Niagara Falls.  Once drained, the imaginary agricultural area would eventually develop lime-rich soils, which would be perfect for high quality wine grapes, and would be similar to the soils in the adjacent Niagara Wine Country.  The fruit would be sheltered from the worst of the Canadian winter that might otherwise be unfavorable for growing and ripening the grapes.  There would be one big problem:  there is too much water in the Niagara Gorge, which transports the Great Lakes waters through the Niagara River into Lake Ontario.

 

So, the imaginary managers deemed that a dam would be necessary across the Niagara River upstream from Niagara Falls to divert the water elsewhere, and help to drain the Gorge.  They knew this would be entirely possible because the Army Corps of Engineers had dammed the Niagara River once before to make repairs to the Falls, back in 1969.  Of course, the magnificent Niagara Falls, a real wonder of the world, would cease to exist.  Meanwhile, the Lake Erie water level would start to rise and bigger and better dikes would be needed, particularly around population centers such as Buffalo, Cleveland, Toledo, and Detroit, to prevent flooding.  This in turn would raise the base level of the inflowing rivers and they would back up and tend to flood more frequently.  The imaginary managers decided to straighten the meander channels of the rivers to allow quicker drainage, but this in turn sent a high discharge of agricultural phosphorus run-off into the Lake.  The higher loading of phosphorus triggered gigantic blue-green bacterial blooms.

 

Clearly an outlet would be needed for the imaginary re-engineered Lake Erie high-level water, so the imaginary lake managers decided to discharge the lake water somewhere else.  Very fortunately, an older structure – the Erie Canal – still existed and would be ideally suited for modification to act as a spillway or overflow channel.  The Erie Canal in turn would channel the water from Niagara into the Hudson River and out into the Atlantic Ocean near New York City.  Unfortunately the voluminous discharge of polluted freshwater from the Lake would do two things.  First, the blue green bacteria would thrive as the discharge water slowed and became semi-stagnant in the estuaries and coastal regions around Manhattan during the summer.  Secondly, the marine wildlife would be severely impacted due to the drastic reduction in salinities by mixing with freshwater. This would lead to the mass death of marine life, together with animals and plants that thrive in marginal marine and brackish environments such as oysters and clams.  Millions of New Yorkers and those in adjacent areas would become enraged because the grape and fruit growers in the Niagara Gorge Agricultural Area have caused all this in the first place, due to their insistence on the change of land usage.  Meanwhile, the farmers in the newly established Niagara Gorge Agricultural Area are thriving and unaffected by these changes, and blame the towns and cities for inadequate sewage treatment and leaky septic tanks.

 

Of course, all this is nonsense and absurd – a figment of my imagination. It wouldn’t happen in real life, would it?  No one could be that inept or uncaring – or could they?

 

The chances of such a catastrophe happening in real life are very slim in the Niagara region.  Any move by a special interest group planning to monopolize a Great Lakes’ resource would come under the immediate scrutiny the International Joint Commission.  In all likelihood they would jump on such a rapacious scheme like a ton of bricks and it would never see the light of day.

 

It’s a great pity that the people of Florida don’t have an equivalent body with overarching responsibility for maintaining the quality of Florida waters for all Floridians.  Unfortunately, sensible planning initiatives over the decades have been circumvented, and most state politicians have been incapable or reluctant to fund policies directed towards protecting Florida’s water resources.  It is a dismal story of failure to protect Florida’s natural resources, and continues to be fueled by campaign contributions from Big Sugar to Tallahassee.  The more-than-century-long story has been insightfully summarized recently by Jaclyn Blair, a law student at Florida Coastal Law School, Jacksonville, graduating this year (2017) as Juris Doctor.  It is recommended reading for anyone wanting to understand the various parts played by corporate interests, citizens concerns, politicians, policies, legalities, and constitutional amendments regarding the destruction of Florida’s natural resources.

 

https://litigation-essentials.lexisnexis.com/webcd/app?action=DocumentDisplay&crawlid=1&doctype=cite&docid=18+Fl.+Coastal+L.+Rev.+89&srctype=smi&srcid=3B15&key=fe52d3a01a3a36e7263670a16a26ea3a

 

https://jacquithurlowlippisch.com/2017/05/02/florida-coastal-law-reviews-sugar-politics-and-the-destruction-of-floridas-natural-resources-by-jaclyn-blair/

 

Jaclyn Blair (Candidate 2017, Juris Doctor)

 

Lake Okeechobee – Big Water, Big Trouble

 

I didn’t think up this sub-header, but thanks to PBS for producing a video of that name.  In 2007 PBS published this synopsis of their program:

 

“During the past 125 years, a series of well-intentioned decisions, actions and policies have turned what should have been one of Florida’s greatest natural treasures into an environmental villain. Six thousand years later after if was formed, residents and agencies across the state are now raising the questions: Is it too late for Lake O?”

 

In 2017 the question is still valid.

 

Let’s start with the Manager of Lake Okeechobee, the South Florida Water Management District (SFWMD), which describes itself as follows in its mission statement:

 

“OUR MISSION: To manage and protect water resources of the region by balancing and improving flood control, water supply, water quality and natural systems.

The South Florida Water Management District is a regional governmental agency that manages the water resources in the southern half of the state, covering 16 counties from Orlando to the Florida Keys and serving a population of 8.1 million residents. It is the oldest and largest of the state’s five water management districts. Created in 1949, the agency is responsible for managing and protecting water resources of South Florida by balancing and improving flood control, water supply, water quality and natural systems.

A key initiative is restoration of the Everglades – the largest environmental restoration project in the nation’s history. The District is also working to improve the Kissimmee River and its floodplain, Lake Okeechobee and South Florida’s coastal estuaries.”

 

 

Now, let’s take a look at Lake Okeechobee’s basic statistics.  It is 730 square miles in area (about 36×29 miles in longest dimensions), very shallow with an average depth of about 9 feet, varies from about 12 ft to 18 ft above sea level, and has a total volume of water of about 1 cubic mile (for comparison, Lake Erie is more than 100 times greater in volume but only about 13 times larger in water surface area).  Lake Okeechobee is the largest lake in the contiguous United States, outside the Great Lakes.

 

Until about 1930, the lake had a natural outflow about 25 miles wide on its south side allowing water to enter the Everglades system.  From about 1930 to 1960 a dirt dam was progressively built, 143 miles in length, and extended all around the Lake as the Herbert Hoover Dike.  This converted Lake Okeechobee from a dynamic system of seasonal inflow and outflow into a semi-stagnant reservoir, with emergency releases of overflow water into canals discharging east and west into the Atlantic Ocean or the Gulf of Mexico, along heavily populated coastal areas.

 

Muddy Waters

 

SFWMD has scientists and engineers working on various aspects of water quality in south Florida, including Lake Okeechobee.  For more than half a century, the Lake Managers have been collecting information on water quality such as water chemistry, amounts of phosphorus and nitrogen, temperature, turbidity, and so on.  That, of course, is their job as a management agency, and each year they and their contractors collect more than a quarter million samples for analysis, many from Lake Okeechobee.  In addition, NOAA has a weather station on the southern rim of the lake and these meteorological data can be integrated with the Managers’ observations on lake water.  This is really important information.  However, their attention to details of biological data seems to be less precise. Their definitions of bloom formation is based, generally, on the amount of a particular type of chlorophyll extracted from water samples, rather than information on the number and concentration of particular types of bacteria or algae.  Nevertheless their information is important, and the Lake Manager’s scientific staff have produced many significant reports analyzing these data to try to explain why bacterial blooms form in the waters of Lake Okeechobee.

 

 

Of first rank importance was the assessment by the Lake Manager’s scientists that Lake Okeechobee was eutrophicating, that is becoming enriched in dissolved nutrients (such as phosphates) that stimulate the growth of aquatic plant life usually resulting in the depletion of dissolved oxygen.

.

http://www.tandfonline.com/doi/abs/10.1080/07438148809354817

 

Another report by the Lake Manager’s scientists documented the continuing increase and doubling of total phosphorus in the Lake between 1973 and 1984.  Fluctuating lake levels and/or resuspension of soft bottom muds my have been involved in the increase.  However other studies drew attention to the burgeoning intensive dairy and beef cattle industries to the north, starting in the 1950s, providing nutrients from agricultural run-off flowing down the Kissimmee River into Lake Okeechobee, together with nutrients entering the Lake system from the sugar cane industry to the south of the Lake, often by back-pumping.

 

http://www.tandfonline.com/doi/abs/10.1080/07438149509354200?src=recsys

 

Other scientists employed by the Lake Manager attempted calculations to balance the amount of phosphorus flowing from the Kissimmee River into the Lake from the cattle farms to the north, compared with the amount being discharged principally through the St Lucie and Caloosahatchee Canals to the east and west.  Their numbers suggested that between 1973 and 2002, each year on average almost 300 tons of phosphorus ended up sinking to the bottom of the Lake.  In the early 2000s the situation had reached crisis proportions because the bottom sediments in the Lake had become thoroughly saturated with phosphorus.  Any further phosphorus would not have bonded firmly to the bottom sediments but would be available in the lake water for biological activity.  In other words, eutrophication was predicted to become much worse, which meant more organisms growing in the lake waters.

 

http://www.tandfonline.com/doi/abs/10.1080/07438140509354423?src=recsys

 

Other studies by the Lake Manager’s scientists looked at meteorological information from NOAA and discerned a complex inter-relationship between wind speed, rainfall, inflow from the Kissimmee River, and lake levels, apparently related to “algal” (i.e. bacterial) bloom formation (that is as judged by the amount of chlorophyll extracted from water samples).  They also noted a steady increase in lake levels between 1972 and 1978.  The maximum amount of algal/bacterial material occurred between May and September in calm summer months when the water temperature typically reaches into the mid-80s.

 

http://www.tandfonline.com/doi/abs/10.1080/07438149009354699

 

So the Lake Manager’s scientists had come up with some interesting possibilities as to what conditions promote blue-green bacterial bloom formation, but not everything matched and not everyone agreed.  This was a real tough nut to crack.  Something seemed to be missing in the puzzle.  But some scientists were concerned enough to state in 2009 that the [Lake Okeechobee] ecosystem is at risk for continued and perhaps worsened eutrophication symptoms under current P [phosphorus] loading conditions.”

 

Descending the Murky Depths

 

In 1994 Dr. P. Moore, a soil science researcher attached to the University of Arkansas and Prof. K.R. Reddy of the University of Florida came up with a new idea.  It might not be just the lake water that was involved in bloom formation, but the sediments on the bottom of the lake might be implicated in promoting higher phosphorus levels, and particularly the extent of acidity and oxidation or reduction near the sediment-water interface.  They arranged for scuba divers to swim down to the lake bottom with special plastic tubes to be pushed into the mud.  The divers brought back several cores of the mud for analysis in the laboratory.  What they found was that phosphorus can be released from the lake muds when the water mixing with the mud is reducing (i.e. little or no oxygen) and/or acidic, and particularly if iron oxides and iron hydroxides are also present.  This is important in a shallow lake where wind can cause the water column to be mixed, bringing oxygen down to greater depths, which assists in retaining phosphorus in sediments.  However, in the case of Lake Okeechobee, winds in the calm summer months tend to be minimal, and oxygen concentrations diminish at the lake bottom.  Therefore, the reducing conditions help to release phosphorus in the water, just as the water temperatures increase optimally to 75-80 degrees F favoring the growth of bacteria.

Prof. Ramesh Reddy

 

Glyphosate in Lake Okeechobee

 

It’s interesting that Dr. Moore’s and Prof. Reddy’s observations about phosphorus release being favored by acid conditions and iron oxides/hydroxides parallels Prof. Spiese’s work on glyphosate in Ohio, which also implicates acidity and iron oxides and hydroxides in the release of phosphorus from cultivated fields and the growth of blue-green bacterial blooms in lakes.  Maybe something similar is happening in Lake Okeechobee and surrounding cultivated land.

 

Well, is glyphosate really present in Lake Okeechobee?  I searched the Lake Manager’s website and noted that as early as 2000 glyphosate was being used to exterminate several thousand acres of cattails in and around the lake by aerial spraying.

 

https://www.sfwmd.gov/sites/default/files/documents/lakeoprimaryexoticcontrolspecies.pdf

 

In addition, the agricultural areas around Lake Okeechobee and in the Kissimmee River watershed are awash with glyphosate, and the farmers appear to have been enthusiastic users since the early 1990s according to the U.S. Geological Survey, whose maps are reproduced below (one for 1992 and another for 2014, but there are others for the in between years).

https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2013&map=GLYPHOSATE&hilo=L&disp=Glyphosate

But the strongest evidence of all for recent years comes from the website of the US Army Corps of Engineers.  They head up the Lake Okeechobee Aquatic Plant Management Interagency Task Force, which has this mission statement:

 

The Corps of Engineers shall chair, and actively solicit participation in the Lake Okeechobee Aquatic Plant Management Interagency Task Force. The Task Force members will represent State of Florida agencies (including the Florida Fish and Wildlife Conservation Commission and the South Florida Water Management District), state Universities, the Corps of Engineers, and other Federal agencies. The Task Force will serve in an advisory capacity, providing multi-disciplinary technical and scientific data from which the Corps’ aquatic plant management strategy, methodology, and research planning and operational efforts will evolve. The focus of the aquatic plant effort will be to benefit the overall ecological health of Lake Okeechobee.

 

http://www.floridainvasives.org/okeechobee/

 

http://www.saj.usace.army.mil/Missions/Environmental/Invasive-Species/Aquatic-Plant-Control-Program/

 

So now it seems that there are two lake managers: The US army Corps of Engineers on the one hand, and the South Florida Water Management District on the other.  The Army Corps of Engineers, as well as having absolute authority to open the floodgates for Lake Okeechobee whenever it deems this necessary, has also now got control of the program to exterminate various aquatic plant species by use of powerful herbicides.  Is this a matter of too many chiefs and not enough Indians?  The Mission of the Army Corps of Engineers is clear: The U.S. Army Corps of Engineer’s mission is to provide vital public engineering services in peace and war to strengthen our Nation’s security, energize the economy, and reduce risks from disasters.  Their Vision is equally clear “Engineering solutions for our Nation’s toughest challenges.”  Their Motto is clear “Building Strong”.  The potential conflict between the two Managers (ACE on the one hand, SFWMD on the other) needs to be rationalized and sorted out to achieve sensible results.

 

So what can ACE tell us about glyphosate?  From time to time the Army Corps of Engineers posts their schedule for spraying programs to control aquatic plants in Lake Okeechobee.  For example, they used glyphosate in July 2016 for extermination of cattails in Lake Okeechobee and again in March 2017.  So glyphosate is present in Lake Okeechobee, definitely from Army Corps of Engineers’ activities and the SFWMD, starting as early as 1988:

 

https://my.sfwmd.gov/portal/page/portal/pg_grp_tech_pubs/PORTLET_tech_pubs/dre-249.pdf

 

http://www.saj.usace.army.mil/Missions/Environmental/Invasive-Species/Operations-Spray-Schedules/

 

The presence of glyphosate is highly probable from farming activities around and upstream from Lake Okeechobee.  It has already been noted that glyphosate may stimulate blue-green bacterial growth, and that the cloning by natural selection of glyphosate-resistant strains is also possible.  The Lake Managers have yet to come up with an up-to-date, complete analysis of Lake Okeechobee waters, showing how much herbicide is present – at least I have not been able to find it on their websites or other relevant publications – and how many toxins such as microcystin have been detected on a routine basis.  Surely the public has a right to know this vital information.

 

Where has all the Water Gone?

 

Well the problem is that the water in Lake Okeechobee generally does not go anywhere, or not where it is meant to be, that is into the southern Everglades.  The various planning decisions and missteps over the years have converted Lake Okeechobee into a vast semi-static reservoir.  From time to time it gets overfull, even with an enlarged dike, and great volumes of water have to be released by the Army Corps of Engineers to the St Lucie River and the Caloosahatchee Rivers with dire results.

 

An impressive report appeared in 2015 by a team of experts headed up Prof. Wendy Graham of the Water Institute of the University of Florida.  The title of the report says it all:  “Options to Reduce High Volume Freshwater Flows to the St. Lucie and Caloosahatchee Estuaries and Move More Water from Lake Okeechobee to the Southern Everglades. An Independent Technical Review by the University of Florida Water Institute”.

 

http://waterinstitute.ufl.edu/research/downloads/contract95139/UF%20Water%20Institute%20Final%20Report%20March%202015.pdf

 

Prof. Wendy Graham

 

It is a very detailed and comprehensive report and well worth reading because it was produced independently at arm’s length from the politicians, and it is for the most part written in plain and comprehensible language.  It discusses many options to solve the problem and to start getting the lake water back down to the southern Everglades.

 

To my mind, the key thing is to include bio-cleaning and remediation of the lake water before it passes south too far down the Everglades system.  Constructed wetlands for water treatment have been in use since the mid-1950s, including several system using cattails, reeds, and other aquatic plants to remove such things as nitrogen, phosphorus, and other pollutants from waste water.  Such systems could be utilized to good effect in the reservoirs anticipated in areas south of Lake Okeechobee, in effect being “reconstructed wetlands” in place of the former sawgrass plains.

 

https://journals.lib.unb.ca/index.php/GC/article/viewFile/3880/4394

 

To its credit, the South Florida Water Management District has constructed several large wetlands called Stormwater Treatment Areas, which are designed to remove excess phosphorus and other nutrients from waters immediately north of the Everglades Protection Area.  One of them in western Palm Beach County STA-3/4) is the largest constructed wetland in the world.

 

https://www.sfwmd.gov/our-work/wq-stas

 

If the overflow water from Lake Okeechobee is not cleaned to rigorous standards, it will fail to reach the high standards of purity required by federal regulators of the Miccosukee Indian tribal lands in the Everglades south of Alligator Alley (see my blog “Sugar and Indians”):

 

https://jacquithurlowlippisch.com/2017/03/24/roundup-sugarcane-indians-professor-geoffrey-norris-slrirl/

 

 

The Last Word

 

Well, all the above makes for pretty dismal reading for the most part.  But there are several rays of sunshine cutting through the mess that has been created to suggest that all is not lost.  Up in Lake Erie there’s a lot of activity on both sides of the border in reconstructing wetlands to replace those lost to drainage and infill schemes over the last century.  New treatments are being invented to remove phosphorus and other pollutants from the run-off water before it hits the lake. Some of the links below will lead you to more details.

 

http://www.ijc.org/en_/blog/2014/10/28/coastal_wetlands_lake_erie_tnc/

 

http://watercanada.net/2016/addressing-phosphorus-in-lake-erie-with-canadian-technologies/

http://ian.umces.edu/pdfs/ian_report_card_396.pdf

 

http://www.sailingbreezes.com/sailing_breezes_current/articles/jan14/restoring-lake-eries-largest-wetland.html

 

Down in Lake Okeechobee, the South Florida Water Management District is showing the world how to build gigantic constructed wetlands as a start to cleaning up the Okeechobee water ultimately destined for the southern Everglades.  And Florida’s politicians are now making major inroads into passing legislation to fund these schemes, such as Senator Joe Negron’s continuing efforts to get the state House and Senate to agree.

 

https://jacquithurlowlippisch.com/2017/04/26/thank-you-to-the-the-man-in-the-arena-joe-negron-slrirl/

 

Keep up the good work, Joe!

 

“The more that you read, the more things you will know.

The more that you learn, the more places you’ll go.”

 

Theodor Seuss Geisel (in I Can Read with My Eyes Shut, 1978)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The False Edge of Lake Okeechobee, SLR/IRL

screenshot 2.jpgIMG_6449.jpg

Road trip series:

Today we continue our road trip in the Glades atop the Herbert Hoover Dike.

In the short video below you can see my Glades tour-guide, former mayor JP Sasser, driving, –in his hometown of which he knows so much about–Pahokee. On the right lies the city, and on the left is Lake Okeechobee. A precarious position indeed!

Pahokee is actually unusual in that this little town is “high-ground.” According to JP, about 13 feet above ground. This is not the case for most of the Glades.

Interestingly, in the video, JP discusses how the Army Corp recently decided where to strengthen the dike in Pahokee, because if they had extended it out 500 feet as was done along the rest of the eastern shore, the town of Pahokee would have been covered up as it is located right beside the dike.

Video: Driving along dike:https://youtu.be/fQILKYeQbeU

Lake Okeechobee’s dike and its history are fascinating just as is all our area of the Northern Everglades including the St Lucie River/Indian River Lagoon that in 1923 became the primary exit point for waters that could no longer flow south after the Herbert Hoover Dike was built.

According to historian and Gladesman Lawrence E. Will:

“…following the floods of 1923 and 1924 water stood over farm lands nearly the entire winter. To protect the farms, the state of Florida had then constructed an earthen dike along the whole south shore. It was some five to eight feet above ground level but this dike was never intended to withstand a hurricane.”

Regarding the expansion of the dike, as the “Herbert Hoover,”after the horrific hurricanes of 1926, ’28 and again in again in ’49, Mr. Nathaniel Reed notes in his writing “Lake Okeechobee and the Everglades: “The Corps of Engineers studied the average size of Lake Okeechobee and designed a dike around it…”

Now this is where things get very interesting.

“The average size of the lake….” what’s that?

Now if we look at this slide taken from a 2016, presented by Jeff Sumner, who was at the time Office Chief State and Agricultural Policy, SFWMD, it shows the size of the lake pre-development. One can see it was about once about 1000 square miles in size and today it is 750.

screenshot.jpg

FullSizeRender 2.jpg
The checkered fields were once lake bottom. L. E. Will, “Okeechobee Hurricane”
FullSizeRender 3.jpg
L.E. Will Swamp to Sugar Bowl. The Glades area, today’s Everglades Agricultural Area has  become one of the most productive agricultural areas in the world…

Of course the size expanded and contracted based on rainfall, but one still gets the point…this lower area was nature’s shoreline, a boggy marsh with rivers leading into a sawgrass “river of grass” bordered by a forest of over 30,000 acres of Custard Apple trees that functioned like mangroves extending up to five miles or more south into what is today’s Belle Glade. As Mr Lawrence Will would have said: “Who wudda thought!” (http://museumoftheglades.org)

IMG_7427.jpg
Pahokee is in upper right. Map Laurence E Will
img_7501
The lake once went further south here and there following the rivers to  Hwy. 80
file-page1-2
Land ownership today
file-page1
Sen. Joe Negron’s map for land purchase

fig1x-2